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Abstract

A traditional trend toward scientific explanation aimed to provide

a single account of the nature of explanation. On the other hand,

a recent attitude toward mathematical explanations of physical phe-

nomena is to go ‘pluralist’ and consider that what makes something

a good explanation can vary from case to case, i.e. there are differ-

ent kinds of explanation which cannot be captured through a single

model. In this paper I will show how two classical theories of scientific

explanation (Van Fraassen’s pragmatic model and Kitcher’s unifica-

tion model) have difficulties in accounting for a case of mathematical

explanation of physical phenomena recognized as such in scientific

practice. Furthermore, I will argue that the result of this testing does

suggest a new picture of mathematical explanations of physical phe-

nomena. According to this new perspective, the pluralist attitude

should be considered as the most promising way to the investigation

of mathematical explanation of physical phenomena.

Keywords: Mathematical Explanation, Visual Reasoning, Asymp-

totic Reasoning, Hénon-Heiles, Unification, Why-Questions

1



1 Introduction

Although there is far from general consensus that mathematics does play

an explanatory role in physics (Daly and Langford, 2009), the existence of

mathematical explanations of physical phenomena is widely recognized in

the literature (Steiner, 1978; Batterman, 2002; Pincock, 2007; Lyon and

Colyvan, 2008). Moreover, it is beyond question that the topic of mathemat-

ical explanation of physical phenomena (henceforth MEPP) has received a

particular attention among contemporary philosophers of science (Mancosu,

2008). This is particularly evident if we consider how MEPP, together with

the related notion of ‘explanatory power of mathematics’, appear as a crucial

ingredient in various and distinct philosophical topics (indispensability argu-

ment, applicability of mathematics, scientific understanding, mathematical

modelling and idealization, etc.).

It is often observed that the leading contemporary theories of scientific

explanation are in trouble when faced with MEPP (Baker, 2005; Batter-

man, 2002; Mancosu, 2008). In fact, in some cases these theories left apart

mathematical explanations and they did not accept mathematical statements

within their structure. This is the case of Hempel’s Deductive-Nomological

model (Hempel and Oppenheim, 1948), in which the explanans must have

empirical content (they must capable, at least in principle, of being tested

by means of experiments and observations). In other cases those accounts

had the ambition to cover MEPP as well but their structure was found to be

insufficient for the treatment of specific cases of MEPP. This is what hap-

pened, for instance, with Kitcher’s unification model (Kitcher, 1989)1. Fi-
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nally, if mathematical objects are acausal, MEPP represent counterexamples

to causal models of scientific explanation, such as Salmon’s (Salmon, 1989),

which consider explanation in the natural sciences as esssentially causal. By

assuming that mathematical objects do not play any essential role in the ex-

planation provided, causal models miss MEPP simply because they rule out

the possibility to have such a kind of explanations. Of course, all the previous

considerations point to some substantial impediments the major theories of

scientific explanation have when confronted with MEPP. Despite the great

interest in the linkage scientific explanation-MEPP, however, an extensive

discussion of models of scientific explanation in the context of MEPP has

not been offered and work is just beginning.

The traditional tendency toward scientific explanation has been to cap-

ture the nature of explanation by providing a single model, i.e. a model whose

aim was to define explanation simpliciter. Call this approach the ‘winner-

take-all’ (WTA) approach to explanation. Although the WTA approach has

been extremely influential in the debate on scientific explanation, a contem-

porary attitude toward MEPP is to go ‘pluralist’ and consider that MEPP

are heterogeneous and we can capture a specific sense (or species) of MEPP

for a specific situation (or class of situations) in science (Pincock, 2007; Bat-

terman, 2010). What makes something a good MEPP can vary from case

to case. That is, there are different kinds of mathematical explanation in

science and we do not design a single model able to capture all the instances

of MEPP.

Leaving apart ontological questions and mysteries about the applicability

of mathematics, i.e. Eugene Wigner’s “unreasonable effectiveness of mathe-
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matics in the natural sciences” (Wigner, 1960), some authors agree that it is

possible to have a better comprehension of MEPP starting from clues which

have been proposed in the context of scientific explanation and focusing on

particular case-studies (Pincock, 2007; Mancosu, 2008; Batterman, 2010). In

this paper I will follow this line. I will consider a particular case study for

philosophical considerations. Furthermore, I will show how the testing of two

traditional WTA theories of scientific explanation, Van Fraassen’s pragmatic

model and Kitcher’s unification model, on this case study can inform the

debate concerning MEPP and suggest a new direction of investigation.

The article is structured as follows. In the next section I will present

Kitcher’s and Van Fraassen’s theories of scientific explanation. In Section 3,

I will consider a case which is recognized in contemporary scientific practice as

a case of genuine MEPP: the behaviour of Hénon-Heiles systems explained

via the phase space formalism. Then, in Section 4, I will assess the two

models against this case study. I will show that the two WTA models of

explanation have difficulties in accounting for this MEPP, thus contradicting

the intuitions coming from the practice of scientists. Finally, in the conclu-

sive section, I will suggest that the result of this testing unveils a picture of

MEPP which stands as yet in need of detailed investigation. According to

this view, there are different forms of reasoning which are used in MEPP,

and the use of these forms of reasoning should be considered as a crucial

component of ‘what makes something a good explanation’. This perspective,

which will be sketched in the final part of my study, is out of tune with the

contemporary WTA approach to explanation and it looks at pluralism as the

attitude to adopt in the investigation of MEPP.
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2 Kitcher and Van Fraassen on explanation

Let me begin by reviewing two major models of explanation we have in our

hands: Kitcher’s and Van Fraassen’s. Together with the accounts, I will

report the criticisms which have been raised to these models. A look at these

criticisms will be of extreme importance for my discussion.

2.1 Kitcher’s Model of MEPP

The concept of unity in physics has a long history. As Klein and Lachieze-

Rey have well illustrated in their book The Quest for Unity: The Adventure

of Physics (1999), the search for unification begins with Greek conceptions

of unity and arrives until our day. It is well known how important the role of

mathematics in the process of inclusion of separate theories and phenomena

into one single framework has been, and continues to be. This is the case,

for example, of Maxwell’s famous unification of electromagnetism and optics

through the Lagrangian formalism. But how does mathematics play this uni-

fying role? And, for what interests us, does this unification have something

to do with explanation? If yes, and if mathematics serves as a unifying tool,

how should we characterize a theory of explanation in terms of unification?

The unification model for explanation, first proposed by Michael Friedman in

(Friedman, 1974) and successively modified and extended by Philip Kitcher

in (Kitcher, 1981, 1989), represents an effort to find such a theory. Due to its

more elaborated structure, Kitcher’s model will be the unification account I

will refer to.

Kitcher has presented his model in two different works: (Kitcher, 1981)
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and (Kitcher, 1989). While originally the model was addressed to general sci-

entific explanation, the fact that such a theoretical account could potentially

cover mathematical explanations of physical phenomena as well as mathe-

matical explanations within mathematics is an opinion shared by a number

of philosophers (Hafner and Mancosu, 2005; Mancosu, 2008 and Tappenden,

2005). Without entering here into the technicalities of the model, I will

present the general idea.

Consider a consistent and deductively closed set K of beliefs endorsed by

a scientific community at a particular time, and call a systematization Σ of

K a set of arguments which derive some members of K from other members

of K. Naturally, there could be different ways to derive some members of K

from other members of K. However, according to Kitcher, there is exactly

one set E(K) of arguments (called the ‘explanatory store’ over K) which

offers the best systematization of K. Observe here that Kitcher explicitly

makes an idealization by claiming that E(K) is unique (Kitcher, 1981, p.

512). An explanation is an act performed by a member of a scientific com-

munity whose beliefs include K and which draws on an argument from E(K).

The fundamental task of a theory of explanation is then to specify the condi-

tions on the explanatory store. By considering unification as the criterion for

systematization, Kitcher’s theory takes E(K) as the set of derivations that

best unifies K.

To evaluate the degree of unification of a systematization Σ, Kitcher intro-

duces the notion of ‘argument pattern’, i.e. a triple consisting of a ‘schematic

argument’, a set of ‘filling instructions’ and a ‘classification’ for the schematic

argument. A particular derivation, for instance a sequence of sentences and
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formulas which accord with Newton’s laws, instantiates a general argument

pattern. The intuitive idea behind unification is that E(K) is the set of

derivations that makes the best trade-off between minimizing the number of

patterns of derivation employed and maximizing the number of conclusions

generated (call this the ‘unification criterion’).

Although a great number of studies have been carried out on Kitcher’s

model in the context of general philosophy of science, the account has not

been extensively discussed for cases of mathematical explanation within math-

ematics and MEPP (Mancosu, 2008). A general criticism of Friedman’s and

Kitcher’s unification approach has been put forward by Margaret Morrison,

who claims that unification has little if anything to do with explanation.

For her explanation and unification are different (and sometimes conflict-

ing) business, and very often they pull in different directions. The point

is stated many times throughout Morrison’s book Unifying Scientific The-

ories (2000). A discussion of Kitcher’s model for the case of mathematical

explanations is found in (Tappenden, 2005), and in (Hafner and Mancosu,

2008) the model is tested by taking into consideration a test-case from real

algebraic geometry. Both those two criticisms deal with cases of mathemati-

cal explanation within mathematics (explanations recognized as such in the

practice of mathematicians), and both give primary importance to the in-

tuitions of mathematicians in their discussions. Johannes Hafner and Paolo

Mancosu argue that Kitcher’s model makes predictions about explanatori-

ness that go against specific cases in mathematical practice. Their lesson is

that Kitcher’s model must be supplemented with some qualitative reinforce-

ment in order to account for the intuitions of mathematicians (Hafner and
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Mancosu, 2008, p. 233). As Hafner and Mancosu, Tappenden also observes

how the existing accounts of unification are more balanced on quantitative

restrictions (for instance, the number of patterns employed) and need to be

supplemented with some qualitative component. His point is that only such

qualitative reinforcements would permit the unificationist to reflect the actual

mathematical practice. Moreover, Tappenden observes how such qualitative

injections would permit Kitcher to have a unified treatment of explanations

in mathematics and in natural sciences (Tappenden, 2005, p. 174).

2.2 Van Fraassen’s Account

Bas van Fraassen has proposed his pragmatic theory of scientific explanation

in his book The Scientific Image (1980). Perhaps the best way to introduce

his view on explanation is to quote two passages from Van Fraassen himself:

There are no explanations in science. How did philosophers come

to mislocate explanation among semantic rather than pragmatic

relations? (Van Fraassen, 1977, p. 150)

An explanation is not the same as a proposition, or an argument,

or list of propositions. [...] An explanation is an answer to a

why question. So, a theory of explanation must be a theory of

why-questions. (Van Fraassen, 1980, p. 134)

Thus, according to Van Fraassen, there is no scientific explanation sim-

pliciter, but explanations are relative to the context dependent why-questions

they answer. What is requested in order to respond to the question ‘Why is
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it the case that P?’ differs from context to context, and the question arises in

a context with a certain body of accepted theory plus information. However,

as I affirmed in the Introduction to the present study, I am considering Van

Fraassen’s account among the WTA conception of explanation, i. e. the

conception of explanation in which the model is designed in order to capture

a general sense of explanation. How do I justify my claim? To understand

my point, let me offer a short illustration of his account.

Van Fraassen’s approach to the general logic of questions was inspired by

Belnap and Steel’s book The Logic of Questions and Answers (1976), with

some additional refinements in order to fit that theory with other studies

on scientific explanation. For Van Fraassen a necessary prerequisite for an

explanation is that there is a why-question. But what exactly is a why ques-

tion? In Van Fraassen’s model a why-question is a triple Q = 〈Pk, X, R〉

consisting of:

• a topic Pk

• a constrast class X = {P1, ..., Pk, ...}

• a relevance relation R

When we ask ‘Why Pk?’ we refer to a proposition Pk called the ‘topic’ of

our question (Pk expresses the fact to be explained, i.e. the explanandum).

The contrast-class of the question is a set of alternatives, that is, a class X of

propositions {P1, ..., Pk, ...} which includes the topic Pk. The propositions (or

alternatives) Pi belonging to X are propositions expressing possibilities the

questioner is willing to consider, including Pk. Finally, a relevance relation
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R is the “respect-in-which a reason is requested”. The relevance relation is

used to constrain admissible answers, by specifying what factors will count

as explanatorily relevant and thus by distinguishing between different senses

of the question. A proposition A is called ‘relevant to a why question Q if

A bears relation R to the couple 〈Pk, X〉2. Answers to such a question Q

differ from non-answers because they have the following form of words: “Pk

in constrast to (the rest of) X because A’, where the word ‘because’ indicates

that A is a reason. More precisely, the word ‘because’ guarantees that A is

relevant, in this context, to the question, i.e. that it bears relation R to

〈Pk, X〉. Thus Van Fraassen proposes a definition of the notion of ‘direct

answer’, i.e. what counts as an answer to a why-question:

• B is a direct answer to question Q = 〈Pk,X,R〉 exactly if there is some

proposition A such that A bears relation R to 〈Pk,X〉 and B is the propo-

sition which is true exactly if (Pk; and for all i #= k, not Pi; and A) is true,

where X = {P1, ..., Pk , ...}. (Van Fraassen, 1980, p. 144)

For simplicity, call A the core of answer B (so that the answer can be

abbreviated to ‘Because A’).

Van Fraassen characterizes explanation as an answer to a why-question,

where why-questions are essentially contrastive (that is, they are of the form

‘Why Pk, rather than some set of alternatives X’?). Furthermore, the why-

questions stipulate a relevance relation R, which is the explanatory relation

(for example, causation) any answer must bear to the ordered pair 〈Pk, X〉.

Like Hempel, then, Van Fraassen seeks to explicate explanation by providing

a formal schema. However, unlike Hempel, the relation proposed in order

to capture explanation is not one of premises to conclusion (via a deductive
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argument), but one of question to answer (via some relevance relation to be

provided). Finally, the evaluation of “how much an answer is telling” relies

on three different criteria: 1) The fact that A itself is more probable in light

of our knowledge K; 2) The probability that A, and thus the answer, favours

the topic Pk against the other members of the contrast class relative to back-

ground knowledge (favouring criteria); 3) The fact that the answer is made

wholly or partially irrelevant by other answers that could be given.

As in the case of Kitcher, it is not possible to discuss Van Fraassen’s

model in its full complexity. However, a few remarks concerning the criti-

cisms which have been addressed to it will play a very important role for the

the considerations to follow.

Note that, although based on the view that explanation is a process of

communication, Van Fraassen’s theory of explanation still chooses to expli-

cate the concept of explanation as a formal relationship between question and

answer, rather than as a communicative relationship between two individu-

als. However, by favouring an unrestricted relevance relation, his account

is open to trivialization. This is the main moral of the criticism proposed

by Philip Kitcher and Wesley Salmon in (Kitcher and Salmon, 1987). They

illustrate this by showing that any true proposition A can be an indispens-

able part of an explanation of any topic Pk (with respect to a constrast class

X that contains Pk and any assortment of false propositions), and, indeed,

that it gets highest marks as an explanation of Pk. If Kitcher and Salmon

are right, to leave the relevance relation R undefined amounts to leave Van

Fraassen’s account open to trivialization. On the other hand, to introduce

some formal constraint on the relevance relation would amount to fix an ob-
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jective criterion of explanatoriness, which is something Van Fraassen does

not want for his model.

Up to now I have considered Van Fraassen’s among the WTA approaches

to explanation. However, Van Fraassen does propose a model in which the

relevance relation is open (it depends on the context) and therefore it seems

that his account perfectly fit into a pluralist perspective on MEPP. Why then

I have considered Van Fraassen’s account among the WTA models? Accord-

ing to Van Fraassen, explanations always come under the form of answers to

why-questions. Then, in regarding explanations as answers to why-questions,

Van Fraassen does impose a general schema which does not fit with a plu-

ralist view on explanation3. This is why I consider his model as a WTA

approach. To consider Van Fraassen’s model as a WTA approach is in tune

with the moral of the last criticism to I am going to present, namely that

proposed by David Sandborg (1998).

Sandborg’s analysis concerns the possibility for the pragmatic account to

deal with mathematical explanations within mathematics (under the form of

proofs). He presents an example of proof from George Polya’s book Patters of

Plausible Inference (Polya, 1968, p. 147) and concludes that a why-question

approach does not account for the conceptual resources introduced by the

mathematician Polya in his explanation of a particular theorem (Polya’s in-

troduction of a particular sequence in what he considers the explanatory

proof). According to Sandborg’s analysis, a why-question approach misses

then an important aspect of the context in which mathematical explana-

tions are given, and more precisely the conceptual resources available to the

questioner in the analysis of the situation. The point raised by Sandborg is
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extremely relevant for our discussion, because the problem is not restricted

to mathematical explanation within mathematics but affects also explana-

tions of physical phenomena analysed through the lens of the why-questions

techniques (Sandborg, 1998, p. 622).

Even if the idea of conceptual resources is left quite undeveloped in Sand-

borg’s study, it is easy to identify such conceptual resources with the quali-

tative reinforcements proposed by some authors to Kitcher’s model of expla-

nation. Again, quantitative factors are not enough for the model to mirror

the practice of scientist.

After this short summary of the models, it is now time to pass to a more

concrete setting. In the following section I will present a case of MEPP

coming from scientific practice.

3 Hénon-Heiles systems

Four decades ago, Michel Hénon and Carl Heiles were investigating the mo-

tion of stars about the galactic center. Rather than solve the problem with

the actual potential of the galaxy (something which would have been quite

difficult to achieve!), they restricted the motion to the xy plane, as in the Ke-

pler problem, and studied a relatively simple analytic potential U(qx, qy) that

illustrates the general features of the problem (Hénon and Heiles, 1964). The

Hénon-Heiles potential exhibits two cubic perturbation terms which couple

together two standard harmonic oscillators:

U(qx, qy) =
1

2
(q2

x + q2
y) + qyq

2
x −

1

3
q3
y (1)
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Accordingly, we call ‘Hénon-Heiles systems’ those systems formed by a par-

ticle moving in such a bidimensional potential.

Consider now the physical phenomenon under study, i.e. the motion of

one particle moving in the Hénon-Heiles bidimensional potential U(qx, qy),

where the qx and qy are called ‘generalized coordinates’. Take the motion

of the system as our explanandum4. More precisely, we want to explain the

behaviour (regular or not) of the system for different energies.

There are two mathematical ways to study the system. We can study

the system through the Lagrangian analysis, or we can adopt the Hamil-

tonian formulation which comes with a particular mathematical structure

called ‘phase space’. The Lagrangian formulation is obtained introducing

the Lagrangian function L = T − U , where T is the kinetic energy of the

system, and successively obtaining the equations of the motion from the so

called Lagrange’s equations:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (2)

In the Lagrangian formulation (nonrelativistic), a system with n degrees

of freedom possesses n (second-order) differential equations of motion of

the form (2). The state of the system is represented by a point in an n-

dimensional configuration space whose coordinates are the n generalized co-

ordinates qi (qx and qy for the present bidimensional example). The motion

of the system (as a function of time) can be interpreted as the path traced by

this point as it traverses the configuration space. In the Lagrangian formu-

lation, all the n coordinates must be independent. However, there is another
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formulation of the problem which is “based on a fundamentally different

picture” (Goldstein, 2001, p. 335). In this formulation, called Hamiltonian

formulation, we want to describe the motion in terms of first-order equations

of motion. In order to do that, we double our set of independent quantities

(thus obtaining 2n independent variables) by adding to our generalized coor-

dinates qi the new variables conjugate (or generalized) momenta pi, defined

as follows:

pi =
∂L

∂q̇i
, (3)

The quantities (q, p) are known as canonical variables.

From a mathematical point of view, the transition from Lagrangian to

Hamiltonian formulation corresponds to changing the variables in our me-

chanical functions from (q, q̇, t) to (q, p, t), where p is related to q and q̇ by

equation (3). The procedure for switching variables in this manner, and the

so called Hamiltonian function which is associated to it, is provided by a

Legendre transformation:

H(q, p, t) =
n∑

k=1

piq̇i − L(q, q̇, t) (4)

If now we consider the differentials of the Lagrangian L(q, q̇, t) and of the

Hamiltonian (4), we will obtain the 2n + 1 relations
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q̇i =
∂H

∂pi
(5)

ṗi = −∂H

∂qi
(6)

∂L

∂t
= −∂H

∂t
(7)

The first two equations above are known as ‘Hamilton’s canonical equa-

tions of motion’. They are the desired set of first-order equations of motion

which replace the n second-order Lagrange equations.

The space of the q and p coordinates is known as ‘phase space’. Hence,

the 2n canonical equations of the motion describe the behavior of the system

point in the phase space, which has 2n-dimensions and whose coordinates

are the 2n independent variables. In other words, in the Hamiltonian formu-

lation of mechanics the dynamics of the system is defined by the evolution

of points (‘trajectories’) in this phase space.

For the case of our system, i.e. a particle moving in the bidimentional

potential (1), the Hamiltonian function will be:

H = T + U =
1

2
(p2

x + p2
y) +

1

2
(q2

x + q2
y) + qyq

2
x −

1

3
q3
y (8)

And the respectively (nonlinear) equations of motion:

d2qy

dt2
=

dpy

dt
=

∂H

∂qy
= −qy − q2

x + q2
y (9)

d2qx

dt2
=

dpx

dt
=

∂H

∂qx
= −qx − 2qxqy (10)
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Fig. 1: The surface of section for the Hénon-Heiles problem is generated by
recording and plotting the successive crossings of the qx = 0 plane in the
direction of increasing qx.

These equations may be obtained from either Lagrange’s equations or

Hamilton’s equations. Although both routes are admissible, however, scien-

tists prefer the use of Hamiltonian formalism involving phase space theory.

This is because, by using the Hamiltonian formalism, we can deduce visually,

from a representation in the phase space, whether the system has a regular

or chaotic motion5. In order to do that, we start by considering the total

energy of the system E constant, thus lowering the dimensionality of the

phase space by one:

E =
1

2
(p2

x + p2
y) +

1

2
(q2

x + q2
y) + qyq

2
x −

1

3
q3
y (11)

We take then a 2-dimensional cross section of this hypersurface in the

phase space and we map the intersections of the trajectories with the plane

by using a function called Poincaré Map (Figure 1). Finally, we look at the

‘dots’ made by the solutions (orbits) on the Poincaré section and we can
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(a) (b)

(c)

Fig. 2: Poincaré sections of the Hénon-Heiles system in the qypy plane (qx =
0), showing several Henon-Heiles orbits. For E = 1

12 orbits are regular (a);
for E = 1

8 we observe regions of regular motion and regions of chaos (b);
finally, for energy E = 1

6 chaos is dominant (c). Based on Hénon and Heiles
(1964).

visually grasp qualitative informations about the dynamics of the system.

We do that by following the order in which the dots appear. Solutions that

never pass through the same arbitrarily small neighborhood of a point twice

are chaotic (instead of following a regular curve, they are scattered and jump

around in a more or less random fashion from one part of the Poincaré section

to another). On the other hand, a dynamic state that gives rise to regular

motion will have the property that nearby dynamic states will stay close to

it as they get mapped around the plane. We use the mathematical ‘resource’
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of Poincaré map because in the Hamiltonian formulation of our problem the

phase space has 4N -dimensions – points in the phase space are represented

by quadruples of the form: (qx, qy, px, py) – and therefore the trajectories in

this space (which define the dynamics of the system) are not directly visual-

isable on a diagram.

The sections for various energies summarize the dynamics at those ener-

gies. Studying the diagrams for different energies we can observe how at low

energy the section is dominated by regular orbits (and then the associated

motion is regular), at intermediate energy the section is divided more or less

equally into regular and chaotic regions, while as we increase the total en-

ergy of the system the orbits become chaotic and the section is dominated

by a single chaotic zone (Figure 2). Such transitions from regular to chaotic

behavior are quite common; similar phenomena occur in widely different sys-

tems, though the details naturally depend on the system under study.

It is important to note, again, that the mathematical procedure involv-

ing phase space is not the only alternative for the study of the system. It

is possible to analyse it via the Lagrangian formalism. However, as pointed

out in a popular textbook on mechanics and dynamical systems:

It is in such maps [Poincaré maps] that the fractal structure of

chaotic dynamics becomes plausible [...] Therefore the use of

phase space is inevitable as a means of understanding the struc-

ture accompanying chaos (Tamás and Márton, 2006, p. 22)

The hamiltonian formalism (including phase space and Poincaré map) is pre-

ferred by scientists because it allows to explain why the system behaves as
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such (in terms of energy). The importance of explaining the behavior of the

system through this procedure is well recognized by scientists. On the other

hand, the Lagrangian route seems not to carry the sense of explanatoriness

that we obtain from the use of phase space theory. For instance, Lyon and

Colyvan write “although there is a Lagrangian formulation of the theory in

question that does not employ phase spaces, the cost of adopting such an

approach is a loss of explanatory power” (Lyon and Colyvan, 2008, p. 2). Fi-

nally, observe that the possibility to reason visually on the diagram (thorugh

Poincaré maps) has an essential role in the explanation provided.

It is now time to ask ourselves the following question: Are the two WTA

accounts presented in Section 2 able to account for the mathematical ex-

planation of Hénon-Heiles systems (MEPP recognized as such in scientific

practice)?

4 Testing the Accounts

Kitcher’s account is faced with an evident difficulty when used to account

for cases of MEPP such as that concerning the behavior of Hénon-Heiles

systems. The difficulty comes, as I am going to show, from the fact that

the only way to explain the regular or chaotic behavior of the system is to

appeal to the possibility to visualize the trajectories on the surface of section.

According to scientists, this is an essential ingredient in the explanation pro-

vided. However, such inferential step (the inferential step in which we infere

the regular or chaotic behaviour of the system by visualizing the trajectories)

cannot be modelled by Kitcher’s idea of argument pattern.
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Recall that the explananda considered in Kitcher’s unification model are

members of K. Informally, we can think of K as the set of statements en-

dorsed by an ideal scientific community at a specific moment in time. A

statement in K, for instance that of the form ‘Object O1 has position P1

and velocity v1 at time t1’, is derived in Kitcher’s model by using a partic-

ular argument pattern (for example, the Newtonian pattern). Furthermore,

the same pattern is used to derive statements which do represent different

phenomena (for instance, the Newtonian pattern is also used to derive the

statement ‘Object O2 has position P2 and velocity v2 at time t2’, which

refers to a physical phenomenon different from that considered by the previ-

ous statement having the same form). The unification model is then able (at

least potentially) to tell that statements which represent different phenomena

are derived from arguments that instantiate a common argument pattern6.

In order to apply Kitcher’s account for the present case of MEPP, two

essential requisites should be fulfilled. First, the pattern of derivation used

in the MEPP of the Hénon-Heiles system must represent an instance of a

pattern used in deriving statements which concern the behavior of other

physical phenomena as well. Otherwise, there would not be the unification

idea that Kitcher assumes for explanation, and my testing would result triv-

ial. Second, the statement concerning the behaviour of Hénon-Heiles system

must belong to the set K of statements accepted by a scientific community

at a particular time. For simplicity, let me indicate with the expression

‘behaviour-statement’ a statement concerning the behaviour of a physical

system7. In our case, the behaviour-statement to consider is the following:

S1 ‘The particle P has regular (or chaotic) behaviour at energy E’
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Fortunately, both the requisites are met: the behaviour-statement S1 be-

longs to K; second, there exist behaviour-statements concerning physical

phenomena different from that related to S1, and these statements are de-

duced via the same procedure used to derive S1. With respect to the former,

the behaviour-statement ‘The particle P has regular (or chaotic) behaviour

at energy E’ belongs to K because it expresses a belief shared by scientists

(it comes from our scientific practice, and it expresses a belief which is shared

by the scientific community at a particular time). Furthermore, it is easy to

see how the second requisite is satisfied as well. The very same procedure

involving the Hamiltonian formalism, the phase space and the Poincaré Map,

can be used to infer statements concerning the behaviour of physical phe-

nomena different from the motion of a particle in a potential. For instance,

the same procedure can be used in the case of the double pendulum, which

is a different physical phenomenon8.

If distinct behaviour-statements about the different phenomena are in-

ferred through the very same procedure, according to Kitcher there should

be an argument pattern which is used to derive these behavior-statements,

thus providing unification. This suggests that the notion to be checked here

is that of Kitcher’s argument pattern.

To test Kitcher’s notion of argument pattern for the present case amounts

to answer the crucial question: is there a pattern (in Kitcher’s sense) which

is able to instantiate the Hénon-Heiles derivation and the derivation of the

double pendulum? If yes, by considering the case of Hénon-Heiles system,

an instantiation of this pattern would account for the particular derivation

of the statement ‘The particle P has regular (or chaotic) behaviour at energy
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E’. In my testing below I am going to show that Kitcher’s idea of argument

pattern does not capture this particular derivation. More generally, I will

point to the fact that Kitcher’s argument pattern does not admit such types

of derivations within its structure.

For Kitcher, a general argument pattern 〈s, f, c〉 is a triple consisting of

a schematic argument s, a set f of filling instructions and a classification c

for s. In the Newtonian case, the following schematic sentences (1)-(5) form

a schematic argument sN :

1. The force on α is β

2. The acceleration of α is γ

3. Force = mass · acceleration

4. (Mass of α)·(γ) = β

5. δ = θ

The members of the set of filling instructions fN are: ‘all occurrences

of α are to be replaced by an expression referring to the body under in-

vestigation’; ‘occurrences of β are to be replaced by an algebraic expression

referring to a function of the variable coordinates and of time’; ‘γ is to be

replaced by an expression which gives the acceleration of the body as a func-

tion of its coordinates and their time-derivatives’; ‘δ is to be replaced by an

expression referring to the variable coordinates of the body, and θ is to be

replaced by an explicit function of time’. The set of filling instructions fN

contains the directions for replacing the dummy letters α, β, γ, δ, θ in ev-

ery schematic sentence. The sentences contained in the classification set cN

for the schematic argument sN give us the inferential information about the
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schematic argument: ‘(1)-(3) have the status of premisses’; ‘(4) is obtained

from (1)-(3) by substituting identicals’; ‘(5) follows from (4) using algebraic

manipulations and the techniques of the calculus’. Thus we have that a par-

ticular derivation in Newtonian mechanics, i.e. a sequence of sentences and

formulas which accord with Newton’s laws, instantiates the general argument

pattern 〈sN , fN , cN〉 just in case: (i) the derivation has the same number of

terms as the schematic argument sN , (ii) each sentence or formula in the

derivation can be obtained from the corresponding schematic sentence in ac-

cordance with the filling instructions fN , (iii) the terms of the derivation have

the properties assigned by the classification cN to members of the schematic

argument sN . The unifying power of Newton’s theory consists in the fact

that, by using the same Newtonian pattern of derivation 〈sN , fN , cN〉 again

and again, the theory shows us how to derive a large number of statements

accepted by the scientific community.

Now, consider the laws of mechanics and the theory of differential equa-

tions as belonging to the corpus K of our beliefs. We want to construct

an argument pattern (of the same kind as Kitcher’s Newtonian pattern)

which does instantiate the particular derivations which lead to the following

behaviour-statements:

S1 ‘The particle P has regular (or chaotic) behaviour at energy E’

S2 ‘The double pendulum S has regular (or chaotic) behaviour at energy

E’

Each statement above (S1, S2) is accepted in K, and each statement

concerns a different physical phenomenon (respectively, the motion of a par-
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ticle in a potential and the motion of a double pendulum). The behaviour-

statement S1 and S2 are both obtained by finding the equations of motion,

constructing the Poincaré section with the relative Map, and finally grasp-

ing visually the behaviour of the system for fixed energies. Observe that

there are plenty of behaviour-statements (concerning different physical phe-

nomena) that can be obtained through the same procedure. For instance,

statements about the regular or chaotic behaviour of the voltage in a triode

circuit (modelled by Van der Pol oscillator), about the behaviour of a spring

pendulum whose spring’s stiffness does not exactly obey Hooke’s law (mod-

elled by the Duffing oscillator), or even about the behaviour of the simple

pendulum or the undamped spring-mass system (the latters modelled by a

simple harmonic oscillator)9. The list of statements above contained only

two of them. Now, if the steps in the derivation which involve the equations

of motion and the construction of the Poincaré section can be mirrored by an

argument pattern à la Kitcher, the inferential step which appeals to the pos-

sibility of visualizing the trajectories cannot. This is evident if we look at the

Newtonian pattern presented above. How would such a (visual) inferential

step appear in the schematic argument s? And what kind of filling instruc-

tions and classification would be able to capture it? The derivation which

is performed in the Newtonian case can be mirrored by a formal deductive

schema of the kind Kitcher proposes, but the derivation used in the MEPP of

Hénon-Heiles system does appeal to an ingredient which cannot be mirrored

by the idea of argument pattern. Moreover, this ingrendient is recognized

as essential by scientists and therefore it is reasonable to include it in the

pattern-structure. If there exits a common pattern for behaviour-statements
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like S1 and S2, then, it seems that this pattern has a structure essentially dif-

ferent from that of the Newtonian pattern 〈sN , fN , cN〉 proposed by Kitcher.

To sum up, an argument pattern à la Kitcher does not admit inside within

its structure a particular inferential step recognized by scientists as essential

to the explanation provided. It is then inappropriate to use it for derivations

of behaviour-statements such as that concerning the Hénon-Heiles system, or

for similar derivations of behaviour-statements concerning different phenom-

ena. Hence, Kicther’s unification model, at least in its original form, is not

able to account for the MEPP concerning the behaviour of the Hénon-Heiles

system and is in conflict with the intuitions of the scientists10.

Consider now Van Fraassen’s model, which treats explanations as an-

swers to why-questions. Our why-question is ‘Why Hénon-Heiles system has

chaotic behaviour at energy E?’, where the topic Pk is ‘Hénon-Heiles system

has chaotic behaviour at energy E’. In the contrast class X we have, to-

gether with the topic, the alternative proposition ‘Hénon-Heiles system has

regular behaviour at energy E’. The answer to the why question is given by

‘Because A’, where A is the proposition ‘Solutions –the dots– are scattered

on Poincaré section. They never pass through the same arbitrarily small

neighborhood of a point twice’.

Now, recall that according to Van Fraassen, B is a direct answer (an

explanation) to our why-question Q = 〈Pk, X, R〉 exactly if there is some

proposition A such that A bears a relation R to 〈Pk, X〉 and B is the propo-

sition which is true exactly if: the topic Pk is true; only the topic is true

in the constrast class X (formed only by the two propositions ‘Hénon-Heiles

system has chaotic behaviour at energy E’ and ‘Hénon-Heiles system has reg-
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ular behaviour at energy E’) ; and A is true. There are at least two problems

with this approach as applied to our example, namely: the problem of de-

termining the relevance relation R and the problem of what a why-question

presupposes. Both point to the fact that the explanation considered cannot

be captured by a why-question analysis. I will address here only the second

problem (but this is sufficient to reject Van Fraassen’s model as suitable to

cover the present case).

Consider the last part of Van Fraassen’s definition of direct answer: B is

a direct answer to Q if B is the proposition which is true exactly if: Pk is

true; only Pk is true in X; and A is true. Moreover, keep in mind that we

want Van Fraassen’s account to agree with scientific practice in considering

the case discussed as a genuine explanation. The difficulty for Van Fraassen’s

approach is noticeable. To say that only Pk is true in X (and then to re-

gard the proposition ‘Hénon-Heiles system has regular behaviour at energy

E’ as false) is grounded exactly in the possibility to qualitatively grasp the

behaviour of the system via Poincaré map and to claim that proposition A

is true. In other words, we know that the Hénon-Heiles system has cahotic

behaviour at energy E because we use Poincaré map and we infer visually

that solutions never pass through the same arbitrarily small neighborhood of

a point twice. But this means that, according to a why-question analysis, the

explanatory activity admitted assumes the form of a display of consequences

(the topic Pk) of what we have already accepted as given (the proposition A).

Very roughly, this would amount to say: ‘this is an explanation because we

have already accepted that it is an explanation’. This is, in fact, the general

moral of Sandborg’s criticism: “The key point is that a why question is taken
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to implicitly fix the way an answer must regard its topic” (Sandborg, 1998,

p. 621).

It is clear then that either the why-question approach is not able to ac-

count for our MEPP11. And therefore both the two WTA models discussed

above are not able to capture a mathematical explanation of physical phe-

nomena recognized as such in scientific practice, and consequently should be

refined or abandoned.

5 Conclusion

A general conclusion from the criticisms presented above (subsections 2.1 and

2.2) is that we need to introduce a qualitative component into our model of

MEPP in order to account for the intuitons coming from scientific practice.

This suggests that there is a link between explanation and qualitative (rather

than purely quantitative) factors in the practice of scientists who explain phe-

nomena in science. It can be conjectured that an example of such qualitative

component does appear in the case of Hénon-Heiles systems, and that it is

given by a particular form of reasoning (visual reasoning) through which we

can look at the diagram and infer informations about the behaviour of the

system. Despite having an essential role in the explanation provided by the

scientists, however, this ingredient is not captured by the two models, as my

assessment shows.

It can be noted that MEPP do not always involve visual reasoning and

it is recognized that there are different MEPP that use other specific forms

of reasoning as well. For instance, in his book The Devil in the Details
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(2002), Robert Batterman has argued that particular species of MEPP, called

‘asymptotic explanations’, gain their explanatory power by the systematic

throwing away of various causal and physical details. By using asymptotic

methods, i.e. methods which “eliminate detail and precision”, the scientist

is able to obtain a particular mathematical explanation for a phenomenon

(or class of phenomena). The reasoning which is generated from asymptotic

methods is called by Batterman ‘asymptotic reasoning’, and ‘asymptotic ex-

planation’ is exactly the kind of explanation which utilizes such specific kind

of reasoning. The fact that unification models and other accounts of explana-

tion do not manage to do a good job for such MEPP was one of Batterman’s

motivations for introducing his own perspective (Batterman, 2002, p. 35).

The main example discussed by Batterman concerns the explanation of-

fered in condensed matter physics for the universality of critical phenomena.

The mathematical technique of Renormalization Group Theory (RGT) is

what permits to reason asymptotically and obtain an explanation for the

universality of critical phenomena. Note that Batterman’s intuitions about

the role played by such particular kind of reasoning is strongly supported by

examples from scientific practice. Kenneth Wilson, the high energy theorist

who formulated the RGT in 1971, in his Nobel lecture “The Renormalization

Group and Critical Phenomena” (8 December 1982) gave particular empha-

sis to the crucial role played by RGT in the explanation of the universal

behaviour of different systems. Illustrating the RGT approach to critical

phenomena, he says: “This [renormalization group analysis] leads to an ex-

planation of the universality of critical behavior for different kinds of systems

at the atomic level” (Wilson, 1982).
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Another form of reasoning which is recognized to come as essential ingre-

dient in our explanatory scientific practices is analogical reasoning. Analog-

ical reasoning is the process of reasoning by analogy, i.e. reason and learn

about a new situation (the ‘target’ analog) by relating it to a more familiar

situation (the ‘source’ analog) that can be viewed as structurally parallel

(Holyoak and Thagard, 1997). While this particular kind of reasoning is

used extensively in our everyday-life, there is a number of philosophers who

welcome the idea that the use of analogical reasoning in science does provide

an essential contribute to scientific explanation (Hesse, 1966).

Far from giving a bestiary of the kinds of reasoning we find associated to

MEPP in scientific practice, the purpose of the previous paragraphs was to

suggest that MEPP involve specific forms of reasonings. But these forms of

reasoning are essentially distinct (for instance, analogical reasoning is distinct

from visual reasoning) and therefore it might be thought that they charac-

terize different ‘species’ of MEPP. To accept this new perspective has an

immediate consequence on our methodology and on the possibility to study

MEPP by proposing a WTA model. In order to account for this variety, or

species, of explanations we have to accept that pluralism is the best attitude

to adopt (at least if we take the intuitions of scientists seriously, which is

what I assume as a basic premise of my investigation). It is very hard, in

fact, to see how this picture of MEPP can fit within the traditional WTA

view12.

If my testing above is correct, and if scientific practice suggests that spe-

cific forms of reasoning are a ‘mark’ of MEPP, how could the WTA partisan

argue against the need of adopting a pluralist perspective? There are, I
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think, three possible ways to reject pluralism as the better attitude to adopt

toward MEPP. A first strategy would consist in denying that such forms of

reasoning play an essential role in MEPP or that examples such as that of

Hénon-Heiles system do represent genuine cases of MEPP. But, again, this

option is not the option our contemporary science seems to suggest. If we

want to take the work of scientists seriously, we have to accept the test-case

considered as genuine case of MEPP and follow the scientists in looking at

the form of reasoning which is involved as a crucial explanatory ingredient.

A second move would be to propose a new encompassing WTA model, i.e. a

model able to account for all the varieties of MEPP (among them the case

of Hénon Heiles systems). However, at the best of my knowledge, we do not

dispose of such a model. Finally, it might be that one of the WTA models

considered up to now, or possibly both, could be refined in order to capture

the specific forms of reasoning occurring in MEPP and reflect the intuitions

of the scientists. But this obviously shifts the burden of the proof to the

partisans of the WTA approach.

To sum up, I did not provide any a priori account of MEPP but I fo-

cused on a MEPP recognized as such in scientific practice. I evaluated on

this test case two theories which are among the leading contemporary WTA

accounts of scientific explanation, those of Kitcher and Van Fraassen, and I

showed that they have difficulties in accounting for the explanatory character

of this case. I pointed out that my evaluation and independent considera-

tions coming from the literature reveal a different picture of MEPP which

is in need to be explored, and it is to this new picture that I turned my

attention. This new perspective, which is only sketched here, is based on a
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paradigm very different from that which stands behind traditional theories

of scientific explanation such as Kitcher’s or Van Fraassen’s. It shifts the

attention of the MEPP-scholar to the particular forms of reasoning which

are employed in MEPP and which are recognized by scientists as essential in

their explanatory practices. Furthermore, this perspective looks at pluralism

as the driving force in the investigation of MEPP.

Again, what I have offered here is only a vague idea of how the study

of MEPP can be approached once we adopt this view. And, unfortunately,

at this stage I do not have very much to say on how a particular form of

reasoning can be captured through a philosophical notion, or even how it

does provide explanatoriness and contributes to the explanation. My mod-

est considerations above are based on an observation of scientific practice,

and this observation points to the evidence that such forms of reasoning are

crucial to MEPP. Let me note, however, that such a perspective has not

been put forward in the literature on MEPP before. Optimistically, its ex-

amination may come out as fruitful and open different directions of analysis,

thus contributing to a debate which is only at its earliest stage and whose

development could have strong repercussions on different areas of philosophy

of mathematics and general philosophy of science.

Notes

1The fact that Kitcher’s theory cannot account for a particular case of MEPP has been

pointed out by Batterman (2002, p. 35). Let me note, however, that Batterman provides

only a general discussion and not a detailed analysis.

2The only formal constraint on the relevance relation is that it obtains between a
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proposition A and topic/contrast-class pairs 〈Pk, X〉. Van Fraassen does not offer any

other relevance requirements on R in its formal characterization. I will return to this

point, central to Philip Kitcher and Wesley Salmon’s criticism of Van Fraassen model,

below.

3Consider, for instance, the following quotation from Matti Sintonen: “It also becomes

obvious that not all explanations are answers to why-questions. Depending on the type of

inquiry at hand they could be how-questions, how possible-questions, what-questions, or

the like” (Sintonen, 1999, p. 134).

4The example of Hénon-Heiles system has been used by Lyon and Colyvan in their

paper The Explanatory Power of Phase Spaces (Lyon and Colyvan, 2008). However,

they discussed the case in the context of the nominalist-platonist debate in philosophy

of mathematics. My analysis here points to aspects which are quite far from Lyon and

Colyvan ontological considerations. I will not concentrate on the role that MEPP like this

are supposed to play in the ontological dispute, but rather on the fact that this case is

considered as a genuine explanation by scientists. This marks an essential difference in

the analysis and in the direction of investigations which follows.

5Chaos is a motion which is, simultaneously: (a) irregular in time (it is not simply

the superposition of periodic motions, it is really aperiodic); (b) unpredictable in the long

term and sensitive to initial conditions; (c) complex, but ordered, in the phase space (it is

associated with a fractal structure) (Tamás and Márton, 2006, p. 22).

6Consider, for instance, that O1 is a ball and O2 is a satellite. The orbiting of the

satellite around the Earth and the falling of the ball from a tower are not the same

phenomena. However, according to Kitcher, they are covered (and unified) by the same

Newtonian pattern, i.e. the arguments from which we derive the two statements ‘Object

O1 has position P1 and velocity v1 at time t1’ and ‘Object O2 has position P2 and velocity

v2 at time t2’ do instantiate the same argument pattern.

7Intuitively, statements such as ‘Mark played his new guitar during the concert’ are

not among the behaviour-statements I am considering here.

8In the same way of the Hénon-Heiles system, the regular or chaotic behaviour of this

system can be established by using the Hamiltonian formalism and then looking at the
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trajectories made on the surface of section. See Chapter 5 of (Korsch et al., 2008) for a

study of the double pendulum.

9In the latter unidimensional cases (simple pendulum and undamped spring-mass sys-

tem) the surface of section coincides with the whole phase space. To study the trajectories

on the surface of section is the same as to study the trajectories in the phase space.

10Observe that the fact that Kitcher’s argument pattern does not reflect the kind of

inferences made in the Hénon-Heiles example is sufficient to show the inapplicability of

Kitcher’s account for the present case. Further considerations about the number of conclu-

sions generated by the pattern are not necessary once the basic idea of argument pattern

comes as inapplicable to our case.

11The failure of the why-question approach for cases of MEPP such as the case I pro-

pose here can be attributed to the fact that those cases do not come under the form

of why-questions. As I showed above, to subsume our explanandum in a why question

amounts to fix ‘a priori’ the way the answer regards the topic. Perhaps in cases such as

that of the Hénon-Heiles system example, a more promising direction of analysis would

be of adopting a What-question approach. For instance, re-formulating the explanatory

question as ‘What is the behaviour of the system at Energy E?’. As in commonly spoken

language, explanations in science are associated not only with with informative answers

which are responses to why-questions, but also with what or even how -questions (Faye,

1999; Sintonen, 1999).

12Perhaps another point which supports the advantage of the pluralist perspective comes

from the fact that by adopting it we can account for a greater number of cases of MEPP

(cases of MEPP recognized as such in scientific practice) which otherwise would be ex-

cluded from our philosophical investigation. This constitutes, I think, a quite important

step ahead in the study of MEPP.
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