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The philosophy behind loop quantum gravity

Quantum gravity is expected to reconcile general relativity and quantum
mechanics.

Because we have no experimental data, approaches are motivated by
intellectual prejudices. What should we take as guiding principles?

Loop quantum gravity is a proposal for a non-perturbative and background
independent quantization of general relativity.

Where does it stand with respect to the “problem” of time? the issue of
background independence? the resolution of singularities? the nature of
space-time?
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A brief history of quantum gravity:

1952 Flat space quantization (Rosenfeld, Pauli, Fierz, Gupta,. . . )
1959 Canonical structure of general relativity (Dirac, Bergmann, Arnowit,

Deser, Misner)
1964 Penrose introduces the idea of spin networks
1967 Wheeler-DeWitt equation
1974 Hawking radiation and black hole entropy
1984 String theory
1986 New variables for general relativity (Ashtekar, Sen)
1988 Loop representation and solutions to the Wheeler-DeWitt equation

(Jacobson, Smolin)
1989 Extra dimensions from string theory
1995 Hilbert space of loop quantum gravity, geometric operators
2000’ Spin foam models, group field theory, loop quantum cosmology,. . .
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What are the relevant degrees of freedom around the Planck scale?
geometry? topology? dimensionality?

What is the meaning of background independence? We have to choose
space-timeM = dimension, differential structure, topology, signature,
metric gµν and matter fields Tµν .

A physical space-time is an equivalence class [M, gµν , Tµν ] =
(M, gµν , Tµν)

Diff(M)
.

Appart from the information inM, general relativity is a relational theory.
The rest of the information is encoded in the causal structure and the
4-volume.

For a given space-timeM, loop quantum gravity is able to provide a
quantum mechanical description of the gravitational field. It is a relational
theory in the same sense as classical general relativity.



The philosophy behind loop quantum gravity

The Hamiltonian of any generally covariant theory is vanishing as a sum of
constraints. As John Stachel would put it, “There is no kinematics without
dynamics”.

To compute observables of the gravitational field itself, we cannot use
background dependent methods and fix the gravitational degrees of
freedom.

How to build a background-independent quantum field theory of the
gravitational field?

If geometry and matter are on the same footing we have to face some
questions. Can we find atoms of geometry? Does geometry have
constituents? What are its elementary excitations? Is the continuum
picture around us only an approximation?



The philosophy behind loop quantum gravity
Canonical loop quantum gravity: key ideas and results
What is canonical loop quantum gravity?

Historically, loop quantum gravity was developped as a canonical
quantization of general relativity. Let us review the fundamental steps of
this construction.

A first remark:

canonical formulation 1 ' canonical formulation 2y y
quantum theory 1 6= quantum theory 2

There is a classical formulation in which the phase space is similar to that
of Yang-Mills theory.
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Canonical loop quantum gravity: key ideas and results
Connection-triad formulation of gravity

The Einstein-Hilbert action

SEH[g] =

∫
M
d4x
√−gR

written in terms of a local flat frame (tetrad)

eI = eIµdx
µ, gµν = eIµe

J
ν ηµν ,

and an so(3, 1) spin connection ωIJ with curvature FIJ , becomes the
so-called Hilbert-Palatini action

SHP[e, ω] =

∫
M
?(eI ∧ eJ) ∧ FIJ [ω].

The starting point for LQG is in fact the Holst action

Sγ [e, ω] =

∫
M

[
? (eI ∧ eJ) +

1

γ
(eI ∧ eJ)

]
∧ FIJ [ω],

which depends on a free parameter γ ∈ R∗.
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Canonical loop quantum gravity: key ideas and results
Hamiltonian formulation

Think about electromagnetism: S[A] = −1

4

∫
M
d4xFµνFµν .

The gauge group of this theory is U(1). If we move a particle around a loop
`, its wavefunction picks up a phase

exp

(
−i
∮
`

A

)
∈ U(1).
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Canonical loop quantum gravity: key ideas and results
Hamiltonian formulation

In the Hamiltonian framework (M = Σ× R), we introduce the Ashtekar
variables

Aia = ωia + γω0i
a , Eai =

1

2
εabcεijke

j
be
k
c ,

{Aia(x), Ebj (y)} = γδijδ
b
aδ

3(x, y).

The constraints are

Gi = DaE
a
i , Ha = EbiF

i
ab, H =

Eai E
b
j√

detE

(
εijkF

k
ab + 2(γ2 + 1)Ki

[aK
j
b]

)
.

They generate SU(2) gauge and spatial diffeomorphism symmetries, and
time reparametrization (dynamics).

Phase space variables are the su(2) connection Aia and the electric field Eai .

The quantization strategy (Dirac) is

Hkin
Ĝi−−−−→ H0

Ĥa−−−−−→ H Ĥ−−−−→ Hphys.
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Canonical loop quantum gravity: key ideas and results
Quantization of gauge theories

Canonical quantization:
Start with a ?-algebra a of canonically conjugate operators.
Represent a by operators living in a suitable Hilbert space.
Turn the constraints into self-adjoint operators.
Build the physical Hilbert space!
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Canonical loop quantum gravity: key ideas and results
Quantization of gauge theories

Canonical quantization:
Start with a ?-algebra a of canonically conjugate operators.
Represent a by operators living in a suitable Hilbert space. GNS
Turn the constraints into self-adjoint operators.
Build the physical Hilbert space!
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Canonical loop quantum gravity: key ideas and results
The Gel’fand-Naimark-Segal construction

Choose a state F on a, i.e. a positive linear functional

F : a → C
a 7→ F (a)

such that

F (a+ λb) = F (a) + λF, F (I) = 1, F (a?a) ≥ 0.

In usual quantum field theory on flat space-time, we use Poincaré
invariance to find F and construct the Fock space with Gaussian
measure. This requires the use of a background metric.
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Canonical loop quantum gravity: key ideas and results
The Gel’fand-Naimark-Segal construction

The case for quantum geometrodynamics. 0904.0184 [gr-qc]

The algebra a is generated by (without background metric)

q̂(f) =

∫
Σ

d3x fabqab, p̂(g) =

∫
Σ

d3x gabp
ab,

[q̂(f), p̂(g)] = i~
∫

Σ

d3x fabgab.

A diffeomorphism φ acting on f or g induces an automorphism θφ on a.

To fully implement background independence, we need a diffeomorphism
invariant state F , i.e. such that F

(
θφ(a)

)
= F (a). We would then have a

diffeomorphism invariant representation of a with a unitary action of the φ
thanks to the GNS construction.

But there is no such state! The quantum algebra of geometrodynamics does
not admit any single diffeomorphism invariant state.
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Canonical loop quantum gravity: key ideas and results
Holonomy-flux algebra

The case for loop quantum gravity.

Remember that we have {Aia(x), Ebj (y)} = γδijδ
b
aδ

3(x, y).

If we construct the algebra a with

Â(f) =

∫
Σ

d3xAiaf
a
i , Ê(g) =

∫
Σ

d3xEai g
i
a,

again, there is no diffeomorphism invariant state! Also, we cannot properly
implement the SU(2) gauge invariance.
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Canonical loop quantum gravity: key ideas and results
Holonomy-flux algebra

Appropriate smearing of the basic variables:
The 2-form Eai is smeared along a surface to define the electric flux

ES =

∫
S

d2σ Eai g
i
a.

The connection 1-form Aia is smeared along a path ` to define an SU(2)
group element, the holonomy (this is a choice!)

h`[A] = P exp

∫
`

Aiaτi ˙̀a.

This leads to the holonomy-flux algebra hf. Captures a finite number of
degrees of freedom of the gravitational field.

On which Hilbert space shall we represent the corresponding algebra of
quantum operators?
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Canonical loop quantum gravity: key ideas and results
Uniqueness of quantization

LOST (Lewandowski, Okolow, Sahlmann, Thiemann) theorem: On the
holonomy-flux algebra, there is a unique SU(2)-gauge and diffeomorphism
invariant state F .

The GNS construction then provides a Hilbert space H and a
representation of the holonomy-flux algebra by quantum operators on it.

Uniqueness of the kinematical structure of loop quantum gravity.

A key role is played by the requirement of diffeomorphism invariance.

(More details in the section on loop quantum cosmology. . . )
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Canonical loop quantum gravity: key ideas and results
Spin network states

A spin network is
a graph Γ consisting of L links and N nodes,
a labelling of the links ` with SU(2) irreducible representations j`,
a labelling of the nodes n with SU(2) invariant tensors in.

i 1

i 2
j 1

j 2

j 3

SU(2)-gauge and diffeomorphism invariant kinematical states are given by
spin network states

|S〉 =
⊗
`

D(j`)(h`[A]) ·
⊗
n

in.

They form a basis of the loop quantum gravity Hilbert space

H =
⊕

Γ

HΓ =
⊕

Γ

L2[SU(2)L/SU(2)N
]
.
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Canonical loop quantum gravity: key ideas and results
Quantum geometry

Spin network states provide a notion of quantum Riemannian 3-geometry.

The simplest operator (partial observable in fact) that acts on a spin
network state is the area operator

Âr|S〉 ∝ γl2Pl
√
j`(j` + 1)|S〉.

The area of a surface punctured by the link ` has a discrete spectrum!

Geometrical operators have discrete spectra in loop quantum gravity: space
is fundamentally discrete at the Planck scale.

UV finite in the sense that there are no transplankian degrees of freedom.

If the continuum around us is only a coarse-grained approximation, how
does it arise physically? Shall we start from a quantum field theory for the
building blocks of quantum gravity?
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Quantum dynamics
Hamiltonian constraint

Problem: define the action of the Hamiltonian constraint, ĤΨ = 0.

Also, how to compute the dynamic and extract physics? Already a problem
in classical general relativity.

Recall that a Dirac observable O commutes with the canonical Hamiltonian:

{O, H +Ha} = 0.

There must be a physical Hamiltonian Hphys 6= 0, generating the dynamics
of O. For this, we can add matter and define reference frames.

Reduced phase space approach:
Construct Dirac observables.
Derive the “true” Hamiltonian Hphys by deparametrizing the system.
Compute Ȯ = {O, Hphys} and then quantize.

Fully relational dynamics.

Remark: We can also derive the black hole entropy formula without the
dynamics.
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Quantum dynamics
Path integral formulation

What about the covariant theory?
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Quantum dynamics
Path integral formulation

Spin foam models allow to define the gravitational boundary path integral
(statement of intent!)

〈Σ1, q1|PH |Σ2, q2〉kin = 〈Σ1, q1|Σ2, q2〉phys =

∫
g|Σ=q

D[g] exp(iSEH),

where SEH is the Einstein-Hilbert action and |Σ, q〉 is a kinematical state of
spatial 3-geometry.

In loop quantum gravity, we have a good handle on the kinematical Hilbert
space: it is spanned by spin network states.
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Quantum dynamics
Heuristic picture

Let us start with two boundary states of the gravitational field.

S 3

S 1j 1

j 2

j 3

f

e

vertex v

The transition amplitude is 〈S1|S2〉 =
∑
F

∏
f

Af
∏
e

Ae
∏
v

Av.
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Quantum dynamics
Discretized geometry

Consider a triangulation ∆ of a 4-manifold consisting of

points segments triangles tetrahedra 4-simplices

The cellular complex defining the spin foam is dual to this triangulation. In
particular, the vertices are dual to 4-simplices.
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Quantum dynamics
Hamiltonian constraint 2

What is the relation with the Hamiltonian constraint operator Ĥ?

We want to compute the physical inner product

〈S1|PH |S2〉kin = 〈S1|S2〉phys,

where the projector

PH =

∫
D[N ] exp

(
i

∫
Σ

d3xN(x)Ĥ(x)

)
projects onto the kernel of the quantum Hamiltonian constraint.



The philosophy behind loop quantum gravity
Quantum dynamics
Hamiltonian constraint 2

What is the relation with the Hamiltonian constraint operator Ĥ?
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Quantum dynamics
Hamiltonian constraint 2

With an appropriate regularization PαH of the projector, it is possible to
formally write the inner product as

〈S1|PαH |S2〉kin =
∞∑
n=0

inαn

n!

∑
Fn:S1→S2

∏
v

Av,

where Fn is a spin foam with n vertices, i.e. n actions of the Hamiltonian
constraint.

But how do we obtain the amplitudes?
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Spin foam models

BF theory of gravity

Gravity in any dimension D can be written as a constrained topological
field theory for the structure group SO(D) or SO(D − 1, 1).

This is encoded in the Plebanski action

S[ω,B,Φ] =

∫
M

(
BIJ ∧ FIJ +

1

γ
? BIJ ∧ FIJ − 1

2
ΦIJKLB

IJ ∧BKL
)
,

where B is a Lie algebra valued 2-form, F a curvature 2-form, and Φ a
multiplier used to enforce the simplicity constraint.

This simplicity constraint ensures that the B field can be written as

BIJ = ?(eI ∧ eJ).
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Spin foam models
Gravity amplitude

The idea is that the simplicity constraint is going to give restions on the
group representations that enter the definition of the amplitude.

Several models on the market:
BC (Barrett, Crane), 4D, Λ = 0

FK (Freidel, Krasnov), 4D, Λ = 0

EPRL (Engel, Pereira, Rovelli, Livine), 4D, Λ = 0

Crane-Yetter, 4D, Λ 6= 0

Ponzano-Regge, 3D, Λ = 0

Turaev-Viro, 3D, Λ 6= 0

. . .
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Spin foam models
Boundary formulation

How to extract predictions from the covariant theory?
With the boundary formalism (Oeckl, Conrady, Rovelli,. . . ).

Start with the boundary functional

W [ϕ,Σ] =

∫
φ|Σ=ϕ

D[φ] exp (iS[φ]) .

W [ϕ,Σ] = W [ϕ] because of diffeomorphism invariance. Then we can
compute

W [x, y,Ψ] =

∫
D[ϕ]ϕ(x)ϕ(y)W [ϕ]Ψ[ϕ].

The information about the geometry of the surface Σ is in the gravitational
field ϕ. We need to specify a state Ψ[ϕ] peaked on some semi-classical
geometry on the boundary.
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Loop quantum cosmology

What can we learn from cosmology?

1920’ In an homogeneous and isotropic model (FLRW), volume goes to zero
and curvature to infinity as we go back in time: big bang singularity!

1950’ Singularities are an artifact due to symmetry reduction (Gamov,
Khalatnikov, Lifshitz,. . . )

1960’ Singularities are ubiquitous (Hawking, Penrose).

Are singularities resolved in quantum gravity?
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Loop quantum cosmology

Loop quantum cosmology: apply the quantizations techniques of loop
quantum gravity to cosmological models. With c ∝ ȧ and p ∝ a2, the
Hamiltonian is

H = − 3

γ2

√
pc2 +

1

2

pφ
p3/2

= 0.

To extract physics, it is usefull (although not necessary!) to deparametrize
the system and use the matter field as a relational time. We can write down
observables such as the volume v(φ) of the Universe.
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Loop quantum cosmology

The naive Wheeler-DeWitt quantization (i.e. with Schrödinger
representation)

ĉΨ = cΨ, p̂Ψ = −i~ ∂
∂c

Ψ,

without additional input, leads to a quantum theory in which the
singularity is not resolved.

This seems to be an impasse because of Stone–Von Neumann’s uniqueness
theorem!
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Loop quantum cosmology

Stone–Von Neumann’s uniqueness theorem.

Imagine a particle living in R with coordinates on phase space T ∗R = R2

given by q and p. The Weyl–Heisenberg algebra is obtained by taking finite
linear combinations of the generators

Q(α) = eiαq, P (β) = eiβp.

Uniqueness theorem: every representation of this algebra that is weakly
continuous in the parameters α and β is unitarily equivalent to the
Schrödinger representation on L2(R, dq):

Q̂(α)Ψ(q) = eiαqΨ(q), P̂ (β)Ψ(q) = Ψ(q + β).

Weak continuity ensures that there exist self-adjoint operators q̂ and p̂ such
that

q̂Ψ(q) = qΨ(q), p̂Ψ(q) = −i ∂
∂q

Ψ(q).

(Can be obtained through GNS with a particular state F .)
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Loop quantum cosmology

How can we obtain different inequivalent representations? By relaxing some
hypothesis of the theorem, such as the continuity. If P (β) is not continuous
in β, there is no self-adjoint operator

p̂ = −i~ ∂
∂q
.

This is indeed what we can expect if the spatial continuum picture fails!

Can we still do quantum mechanics? Yes, on the Hilbert space

Hpoly = L2(Rd, µd).
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Loop quantum cosmology

In FLRW loop quantum cosmology, we evaluate the holonomy of the
connection along straight edges µ and obtain

hµ(c) = cos
(µc

2

)
I + 2 sin

(µc
2

)
τi.

We end up working with the algebra of almost-periodic functions

Cyl 3 g(c) =
∑
j

αj exp
(
i
µjc

2

)
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Loop quantum cosmology

k=0 LQC
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(AA, Pawlowski, Singh)
Expectations values and dispersions of V̂ |φ & classical trajectories.

Gamow’s favorite paradigm realized.
– p. 17

The Universe does not reached the singularity but is bounced back.
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Loop quantum cosmology

It is possible to derive the leading order quantum correction to the
Friedmann equation:

H2 =
8πG

3
ρ

(
1− ρ

ρc

)
where ρc ≈ 0.82ρPl.

Some science-fiction: what happened before our Universe?
Another classical Universe?
A quantum mess?
Nothing?
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Conclusion

A provocative overstatement:
Loop quantum gravity is apparently able to provide “some” notion of what
quantum general relativity might look like. The key idea is that quantum
general relativity is in fact quantum geometry, a theory of quantum
space-time.

A key role is played by background independence.


	Canonical loop quantum gravity: key ideas and results
	What is canonical loop quantum gravity?
	Connection-triad formulation of gravity
	Hamiltonian formulation
	Quantization of gauge theories
	The Gel'fand-Naimark-Segal construction
	Holonomy-flux algebra
	Uniqueness of quantization
	Spin network states
	Quantum geometry

	Quantum dynamics
	Hamiltonian constraint
	Path integral formulation
	Heuristic picture
	Discretized geometry
	Hamiltonian constraint 2

	Spin foam models
	BF theory of gravity
	Gravity amplitude
	Boundary formulation

	Loop quantum cosmology
	 

